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Abstract

The conditional expectation.

Exercice 0 Let T be a discrete random variable, and X be measurable with respect to σ(T ).
Show that it exists a measurable function f such that X = f(T ).
Prove that the converse is also true.
(Please note that this equivalence also holds if T is not discrete.)

Proof. We will only prove the first implication.
First, note that it is enough to prove that, for every t ∈ ST , we have ω1, ω2 ∈ {T ∈ t}, implies
X(ω1) = X(ω2), because in this case we can define f(t) = X(ω1).
Thereby, suppose by absurd that for such ωi, we have X(ω1) =: a ̸= b := X(ω2). Then, considere
A1 := {T = t} ∩ X−1(a) and A2 := {T = t} ∩ X−1(b) in σ(T ) and disjoint in {T = t} by
assumption. But this contradicts the fact that X is measurable with respect to σ(T ). ■

I Definition
Exercice 1 Let X,T be two random variables such that E[|X|] < ∞ and such that T is discrete.
Give the definition of the conditional expectation E[X | T ].
Prove that the following identity, characterizing the conditional expectation (see course) is true,

∀f : R 7→ R mesurable and bounded, E
[
f(T )E[X | T ]

]
= E

[
f(T )X

]
.

Proof. In the discrete case, we have

E[X | T ] =
∑
t∈ST

E[X | T = t]1T=t.

Thus we can compute

E
[
f(T )E[X | T ]

]
= E

[
f(T )

∑
t∈ST

E[X | T = t]1T=t

]
=

∑
t

E[X | T = t]E[f(T )1T=t]

=
∑
t

E[X | T = t]f(t)P(T = t) =
∑
t

E[Xf(t) | T = t]P(T = t)

=
∑
t

E[Xf(T ) | T = t]P(T = t) = E[Xf(T )],

the last equility coming from the totale probabilities formula. ■

Exercice 2 Let X,Y be two random variables such that (X,Y ) has a density h(x, y) and X
admits a first moment. Let A ∈ B(R) and y0 ∈ R. Compute, for ε > 0, P(X ∈ A | Y ∈]y0−ε; y0+ε[),
and propose an expression for E[X | Y ].
Finally, show that indeed

E[X | Y ] =

∫
R xh(x, Y )dx∫
R h(x, Y )dx

. (I.1)
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Proof. We have, for y0 ∈ R and ε > 0, and supposing that the density if continuous, the following
formal reasonning

P(X ∈ A | Y ∈]y0 − ε; y0 + ε[) =
P(X ∈ A ∩ Y ∈]y0 − ε; y0 + ε[)

P(Y ∈]y0 − ε; y0 + ε[)

=

∫ y0+ε

y0−ε

∫
A
h(x, y)dxdy∫ y0+ε

y0−ε

∫
R h(x, y)dxdy

−→ε 7→0

2ε
∫
A
h(x, y0)dx

2ε
∫
R h(x, y0)dx

=

∫
A

h(x, y0)∫
R h(x′, y0)dx′ dx

Thus, we can infere that the conditional law of X knowing {Y = y0} has a density

h(·, y0)∫
R h(x′, y0)dx′ ,

and thus we would have indeed (??).

Now, we have to prove to prove rigorously (??).
By Exercice 0, we know that it exists f measurable such that E[X | Y ] = f(Y ), thus we have to
find the f such that, for every measurable bounded function g we have

E[Xg(Y )] = E[f(Y )g(Y )]. (I.2)

The left hand side checks

E[Xg(Y )] =

∫∫
R×R

xg(y)h(x, y)dxdy =

∫
R

(∫
R
xh(x, y)dx

)
g(y)dy.

The right hand side checks

E[f(Y )g(Y )] =

∫∫
R×R

f(y)g(y)h(x, y)dxdy =

∫
R

(
f(y)

∫
R
h(x, y)dx

)
g(y)dy.

This being true for every function g, we can deduce (why?) that, for almost all y,

f(y)

∫
R
h(x, y)dx =

∫
R
xh(x, y)dx.

Thus, indeed, the f checking (??) is the one given by (??). ■

II Properties
Exercice 3 Let X,X1, X2, . . . be random variables such that E[|Xi|] < ∞, and F be a σ-algebra.
Prove that the following properties are true,

i) E[λ1X1 + λ2X2 | F ] = λ1 E[X1 | F ] + λ2 E[X2 | F ].

ii) If X ≥ 0, then E[X | F ] ≥ 0. Deduce that if X = 0, then E[X | F ] = 0.

iii)
∣∣E[X | F ]

∣∣ ≤ E[|X| | F ]. Deduce that ∥E[X | F ]∥1 ≤ ∥X∥1, which means that if X is
integrable, then E[X | F ] also.

iv) If X is measurable with respect to F , one has E[X | F ] = X.

v) If φ is a convex function on R such that E[|φ(X)|] < ∞, one has φ
(
E[X | F ]

)
≤ E

[
φ(X) | F

]
(this is Jensen conditional inequality).
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vi) If Xn 7→ X as, and ∀n ≥ 0, |Xn| ≤ Y ∈ L1, one has E[Xn | F ] 7→ E[X | F ] in L1 (this is
conditional dominated convergence theorem).

vii) If Z is a F-measurable bounded random variable, then E[X | F ]Z = E[XZ | F ].

viii) E
[
E[X | F ]

]
= E[X].

ix) If F ′ is another σ-algebra such that F ′ ⊂ F , one has

E
[
E[X | F ′] | F

]
= E[X | F ′] = E

[
E[X | F ] | F ′].

Proof. Points i), ii), iii) and iv) are given by the proof of the existence and unicity of the conditional
expectation.

v) Let x0 := E[X | F ], and by classical properties of convex functions, we know that we can
define a, b ∈ R such that ax+ b ≤ φ(x) and ax0 + b = φ(x0). Thus

φ
(
E[X | F ]

)
= φ(x0) = ax0 + b = aE[X | F ] + b = E[aX + b | F ] ≤ E[φ(X) | F ].

Note that it is just the classical proof of Jensen’s inequality, written for conditional expecta-
tions. Also note that x0, a and b are random variables, but since they are F-measurable the
computations we made are allowed.

vi) By the classical dominated convergence, we have ∥Xn −X∥1 7→ 0. Thus by i) and then by
iii) we have indeed

∥E[Xn | F ]− E[X | F ]∥1 = ∥E[Xn −X | F ]∥1 ≤ ∥Xn −X∥1 7→ 0.

vii) Take A ∈ F , and notice that Z1A is F-measurable, thus by definition indeed

E
[
(E[X | F ]Z)1A] = E

[
E[X | F ](Z1A)] = E[XZ1A].

viii) It’s just the definition of the conditional expectation with 1A = 1, ie A = Ω.

ix) For clarity, note Z := E[X | F ′].
The first equality is true because Z is F-measurable and thus we can use point iv).
The second equality is a little bit more tricky. We have to show that for every F ∈ F ′,

E[Z1F ] = E
[
E[X | F ]1F

]
.

But since 1F is F-measurable, we can use points vii) and viii) to show that

E
[
E[X | F ]1F

]
= E

[
E[X1F | F ]

]
= E[X1F ].

Finally, one can note that E[X1F ] = E[Z1F ] by the definition of Z.

■

Exercice 4 Let X1, X2 be two random variables such that E[|Xi|] < ∞, and F be a σ-algebra.
Suppose that X1 is independant of F , and show that

E[X1 | F ] = E[X1] as.

Suppose that X1 is independant of σ(σ(X2),F), and that E[|X1X2|] < ∞, and show that

E[X1X2 | F ] = E[X1 | F ]E[X2 | F ].
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Proof. • First, we have to show that, for every A ∈ F ,

E
[
E[X1]1A

]
= E[X11A].

And indeed thanks to independance, we have

E
[
E[X1]1A

]
= E[X1]E[1A] = E[X11A].

• Now, we have to show that, for every A ∈ F ,

E
[
E[X1 | F ]E[X2 | F ]1A

]
= E[X1X21A].

And indeed thanks to independance, we have, noting Z := E[X2 | F ]1A = E[X21A | F ] a
F-measurable function

E
[
E[X1 | F ]E[X2 | F ]1A

]
:= E

[
E[X1 | F ]Z

]
= E[X1Z]

= E[X1 E[X21A | F ]] = E[X1]E[E[X21A | F ]]

= E[X1]E[X21A] = E[X1X21A]

■

III Exercices
Exercice 5 Let X,Y, Z be three random variables with a first order such that (X,Z) has the
same law as (Y, Z). Show that for all f ≥ 0 measurable and bounded,

E[f(X) | Z] = E[f(Y ) | Z].

Then, let g ≥ 0 a measurable and bounded function, and define h1(X) := E[g(Z) | X] and
h2(Y ) := E[g(Z) | Y ]. Show that h1 = h2, µ-ae, where µ is the law of X (and of Y ).

Proof. For the first part, note that for every g measurable and bounded, since the equality of the
laws

E[f(X)g(Z)] = E[f(Y )g(Z)]

⇔ E
[
E[f(X) | Z]g(Z)

]
= E

[
E[f(Y ) | Z]g(Z)

]
.

This beeing true for every function g, we can deduce (why?) that, Z-almost surely

E[f(X) | Z] = E[f(Y ) | Z].

For the second part, note that (X,Z) ∼ (Y, Z) implies X ∼ Y ∼ µ. Then we compute, for every
measurable bounded function φ,

E[g(Z)φ(X)] = E[g(Z)φ(Y )]

⇔ E[h1(X)φ(X)] = E[h2(Y )φ(Y )]

⇔ E[h1(X)φ(X)] = E[h2(X)φ(X)].

Thus E[(h1 − h2)(X)φ(X)) = 0, and this beeing true for every function φ we can deduce (why?)
the desired result. ■
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Exercice 6 Let T1, . . . , Tn be i.i.d. integrable random variables, et let T :=
∑n

i=1 Ti.
Show that

E[T | T1] = T1 + (n− 1)E[T1] and E[T1 | T ] = T

n
.

Proof. For the first part, we compute

E[T | T1] = E[T1 | T1] +

n∑
i=2

E[Ti | T1] = T1 +

n∑
i=2

E[Ti] = T1 + (n− 1)E[T1],

by i) and iv) of Exercice 3, and Exercice 4.

For the second part we can notice that by the symmetry property proven in Ex5, for every
1 ≤ i, j ≤ n one has,

E[Ti | T ] = E[Tj | T ],

and that
n∑

i=1

E[Ti | T ] = E[
n∑

i=1

Ti | T ] = E[T | T ] = T.

The result follows. ■
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